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INTRODUCTION 

In  this presentation we discuss methods for inverse or parameter estimation problems 

which can  be employed a s  quantitative modeling techniques in  models for  distributed 

(spatially, age, size, etc.) biological systems. In  this context they may be useful in attempts 

to understand, elaborate on, or fu r the r  re f ine  details of specific mechanisms f o r  dispersal, 

growth, interaction, etc. in wide classes of models. We have also used these techniques in  a 

number of biologically related problems [ I ]  such as bioturbation [12], [14], [15] a n d  

climatology [19]. In addition to a n  overview of ideas underlying these techniques, we shall 

present here brief discussions and  some findings on  two specific biological problems fo r  

which we a r e  currently using them successfully. 

A typical inverse problem entails some given or hypothesized dynamical model with 

"parameters" q (often temporally and/or  "spatially" or even state dependent) a n d  "states" 

u(t,x;q), O<t<T, x c q  which depend on the  parameters through a dynamical system of 

equations. O n e  has observations or  da ta  G i j  f o r  u(ti,xj;q) and  wishes to  choose, f rom some 

admissible parameter set Q, parameters S so a s  to give a best f i t  of the  model to the data. 

For example, we might have a hypothesized model f o r  transport  

aua 
a t  + ax 

with init ial  

q=(I/.D,F). 

a n d  boundary conditions also possibly depending on the  unknown parameters 

Given da ta  uij, we seek to minimize a fit-to-data criterion such as a least-squares 
A 

over a specified class Q of functions (17,D.F) so as to obtain a best estimate = (?,D,F). In 

addi t ion  to obtaining estimates fo r  q, usually one  desires to analyze in  some way the  "goodness' 

of the  model i n  describing the  phenomena one is modeling. We shall elaborate on some relatcd 

questions in  this regard below. 
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T h e  methods we discuss briefly here can  be powerful modeling tools when carefully 

a n d  correctly used. Some of the  novel fea tures  of ou r  recent e f fo r t s  include the  

capabilities for estimation of (i) state or density dependent dispersal coefficients such as D 
above in  (I) ,  (ii) system nonlinearities such as F i n  ( I ) ,  and  (iii) boundary parameters i n  

both simple and not-so-simple boundary conditions (we give a n  example in the  discussions 

on size dependcnt models below). Furthermore, there a r e  a numbcr of modeling related 

qucstions that onc  might hope to address f rom a theoretical o r  computational (or both) 

vicwpoint with t h c  a id  of these techniques. 

(a) Exoerirnental desinn [3], [4]. [5]: What is the  appropriate da t a  required to support  analysis 

of a particular model or mechanism? E.g., How many time vs. spatial observations must be 

made, or what type of init ial  da ta  is needed to s tudy  movement patterns? 

These include: 

(b) Robustness of model oarameters [I] ,  [3], [8], [16], [19]: Do the problem formulation a n d  

the  methods enjoy certain stability properties? E.g., Do the  parameter estimates a n d  the  

estimation mcthods depend continuously on observation noise, init ial  data,  amounts of 

da t a  available, problem constraints, etc.? 

(c) Identifiabilitv [18j, [25]: Is the map Cram the  parameter space to the observation 

sufficiently well-behaved so that the methods can  produce unique estimates? 

(d) Model comparison [3], [5], [19]: Can one  make evaluations regarding the  importance 

a n d  type of mechanisms needed to model given phenomena? E.g., Which is more 

important in particular transport phenomena: convection, diffusion, nonlinear effects, 

dynamic  (time varying) vs. heterogeneous (spatially varying) terms or coefficients? What 

level of refinement in modeling terms can  be supported by the experimental  design and  

da ta?  Do model refinements yield statistically significant improvements in explanation of 

the  da ta?  

CONCEPTUAL CONSIDERATIONS 

We next outline briefly certain ideas related to the  problems a n d  methods that a r e  the  focus 

of this presentation. A t  the  same time we shall indicate some questions tha t  may arise in either 

theoretical or computational aspects of investigations using the methods. These discussions can 

bc made precise a n d  mathematically rigorous, but fo r  the  sake of brevity, we shall not d o  that 

hcre. 

For the  purposes of illustration, we return to the  problem of minimizing the functional of 

(2) subject to the system (1) relating the states a n d  parameters. Such problems lead to the  necd 

fo r  optimization techniques fo r  constrained problems that a r e  infinite dimensional in nature. 

Onc  has a systcm with states (t,x)-u(t,x) in some inf in i te  dimensional func t ion  space X and  

parameters (t,x)+q(t,x), or (t,x,u)+q(t,x,u) if t he  parameters a r e  state dependent,  in some inf in i te  

dimensional function space Q. These problems can  be concisely stated in a theoretical 

framework using either the  theory of semigroups or evolution operators, or the  theory of  

sesquilinear forms in Hilbert spaces. We won't pursue the  details  here, but re fer  the  reader to 

r21, [71, [91, [131, ~ 1 .  
In  any  case, this leads to the recognition tha t  in order to effectively develop 

computational techniques, one  must introduce approximation schemes f o r  the  state and  
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parameter spaces. T h a t  is, one  needs families of f in i te  dimensional spaces XN a n d  QM (such 

as f in i t e  elements, splines, spectral families) such tha t  XN approximates X well a s  N+= a n d  

QM approximates Q as M'm. (We shall (imprecisely) write this a s  XN-X, QM-Q or simply 

N-a, M-m, in the  discussions below.) One  then must develop schemes to solve thc 

approximate problems obtained when u in  J of (2) is replaced by the  approximate states 

uNcXN satisfying some equation approximating (1). Minimization is car r ied  out  over QM 

yielding approximate best-fit parameters GNiM. Thus, the  algorithms we have developed 

and  used (e.g. see [3], [5], [8] f o r  details) en ta i l  i terative optimization techniques combined 

with appropriately chosen approximation schemes based on families XN, QM. 

Among the  important questions associated with these approximation ideas a r e  those of 

method converEence and  method stability. In the first ,  one must argue that GNiM-q as XN+X, 

QM-Q, where s is a solution to the  original problem involving (1) a n d  (2). T h a t  is, one must 

assure fideli ty of the estimates under sufficiently accurate approximation of state a n d  

parameter spaces. The  concept of stability is related to a continuous dependence of the  

estimates on the  observed data,  XN, a n d  Q'. More precisely, if cNnM(C) denotes solutions to the  

approximate problems corresponding to state space XN, parameter space QM a n d  da ta  C, and  if 

(iK) is a sequence of da ta  with CK+C, then one desires to guarantee tha t  GNiM(jK)+~(C) as  

N,M,K+m, where q(;) is a solution of the original problem with da ta  j. Tha t  is, f ideli ty of the 

estimates will hold wi th  sufficiently small noise in the  observations as well as sufficiently 

accura te  approximations of the state a n d  parameter spaces. For fu r the r  discussions see [I], 

[IS]. 
One  can  develop a general theory to guarantee theoretically and  computationally 

wcii-behavcd aigoriihms based on the idcas we have used in a wide class of ijiobliins incliidiiig 

the examples discussed below. The  arguments rely heavily on ideas from functional analysis, 

approximation theory a n d  compactness. We refer t he  reader to [l], [4], [SI, [IS], [18], [25] f o r  

fu r the r  elaboration a n d  details. We only note here tha t  fundamenta l  to all these convergence 

and  stabil i ty results is the establishment that uN(t,x;qM)-'u(t,x;q) in some sense (i.e., in a n  

appropr ia te  X-topology) whenever qM+q in  a n  appropriate sense (Le., i n  a Q-topology). For 

fu r the r  discussion of mathematical ideas, and  implementation and  testing of the  methods, we 

refer to the  presentations in [3], [SI in addition to those references cited above. Here we 

discuss several projects i n  which these methods are playing a fundamental  role and  outline some 

new results i n  two areas,  

INSECT DISPERSAL/GROWTH MODELS 

We have, in collaboration with P. Kareiva (U. Washington), considered a number of aspects 

of insect movement a n d  growth. In several cases our  quant i ta t ive  methods have proved useful 

in planning the  experiments as well a s  actually investigating various models. Among the  

investigations we have pursued are: 

(i) quan t i fy ing  "initial disturbance" e f fec ts  in dispersal rates fo r  f lea  beetle movement in  

mark-recapture experiments in cult ivated collard patches [3], [5], [21], [22], [23]; 

(ii) s tudying  the  e f fec ts  of density-dependent dispersal rates, nonlinear growth, interaction, 

a n d  predation in  multiple species models such a s  those fo r  ladybug-aphid-goldenrod 
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experiments [IO], [24]; 

(iii) quantifying "preferred direction" components i n  cabbage root f l y  movement in  

two-dimensional domains [6], [31]. 

In regard to the  investigations of (ii), we note tha t  the methods can  be used effectively to 

estimate the  shape of density-dependent dispersal coefficients D and  nonlinear growth terms f 

in models of the fo rm 

where D(t,x,-) has the  fo rm depicted in  Figure 1. 

Figure I 

Such dispersal coefficients represent a ra te  tha t  is bounded below a n d  above (basal and  

sa tura t ion  limits) and  depends linearly on the  density between these bounds. Problems with 

density-dependent dispersal have received attention elsewhere [ 2 8 ] ,  [ 2 9 ]  (see also [26] for  

fu r the r  discussions regarding the importance of such problems). 

Before using our  estimation or inverse techniques in problems with experimental data,  

we ca r ry  out  a ra ther  careful testing of t he  methods with "synthetic" da t a  on numerous 

examples. This  procedure involves a series of tests using "data" generated (with noise) from 
a system with known (prechosen) parameters to ascertain the  ability to recover the parameters 

f rom given sets of "data". For detailed explanations of this procedure, see for  example [3], [ 5 ] .  

This  testing is also combined with attempts to establish convergence a n d  stability results fo r  the 

methods. For problems involving systems of the  type (3), such results a r e  given in [l], [IO], [ I l l .  

We present here results f rom two of the  numerical  tests we performed. 

ExamDle 1: We seek to estimate D = D(u), i.e., to, I,, a, B in Figure 1, in the  system 

au = & k ( u ) g ] +  2 u 2 -  bs + F(t,x), u(t,O) = u(t , l)  = 0, u(0,x) = 6x(l-x), 
a t  ax 2 

where F is known (computed analytically so tha t  u(t,x) = 6x(1-x)(l+t2) is a solution 
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corresponding to a "true" parameter D* with Co=.5, C,=1.6, -3, B-1). "Data" corresponding 

to observations a t  (ti,xj), ti=0,.5,1,x.=.1,.2, ...,. 9, were used for the  inverse procedure. Results for 
estimation with N=6 a n d  N=14 (cubic splines were used for the  s ta te  approximations - see 

[ I O ]  f o r  details) along with the  initial estimate Do a n d  t rue  value D* a r e  depicted in  Figure 

J 

2. 

3 1 
I I I I I I I I I I 

0.0 1 .o 2 .o 

Figure 2 

Example 2: We seek to estimate q and  the nonlinearity f (we do not make a n y  a priori 

parametrization or shape assumption on f )  in 

ay = q &L +f(u) + F(t,x), u(t,O) = u(t,l) = 0, u(0,x) = 6x(l-x), 
a t  ax 

where again F is computed so that 'u(t,x) = 6x(1-x)(l+t2) is a solution corresponding to t rue  

values q*= 3.0, f*(u) = 2u2 - Results f o r  the simultaneous estimation of  f a n d  q wi th  

state approximation N=6 (cubic splines with mesh h= $) and  parameter approximations 

(linear splines) f o r  f with mesh size h=.65 (see [ l l ]  fo r  fur ther  details) a r e  presented in  

Figure 3. These results fo r  the initial estimate fo, the converged value and  f*  

correspond to init ial  guess qo=l.O and converged value 2=2.9993. 

u3. 
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1 I 1 I I I 

0.0 1.0 2 .o 3 . 0  

Figure  3 

SIZE DEPENDENT GROWTH MODELS 

We a r e  currently using ou r  parameter estimation techniques in investigations tha t  e n t a i l  size 

dependent population growth models. Data  f rom experiments with mosquito fish populations in 

rice paddies have motivated our  collaborative e f for t s  with L. Botsford (U. California,  Davis). 

While the  basic problems we a re  considering a re  control problems for  the  mosquito 

fish/mosquito populations, a substantial e f fo r t  is required in developing the underlying 

dynamics (i.e., g rowth  models). For a more detailed description of the  modeling and  control 

problems, we re fer  to [17], [30]. 

A simple version of the  basic modeling problem entails estimation of q=(g,m,b) in the  

system 

au + a (gu) = -mu xo<x<xl,  t>O, u(0,x) = q x ) ,  g(xo)u(t,xo)= I X'b(t,F,)u(t,5)d5, 
at ax (4 )  

xO 

where g=growth rate, m=mortality rate, a n d  b=fecundity a re  in general dependent on time t and  

size x, with xo, x1 the  minimum a n d  maximum observable sizes, respectively. Data for  the 

system generally consists of observations tha t  yield values ^u(ti,x), x,,<x<x,, so tha t  a distributed 

least-squares criterion, e.g., 

is appropriate. 
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Since a convergence theory for the  estimation problem has not appeared elsewhere, we 

sketch one approach  to this problem. This  approach is the  analogue to tha t  given in  [I], [IO], 

[ I l l  f o r  t h e  insect dispersal model problems. We f i r s t  rewrite (4) in variational or weak form. 

We seek u(t)eHO(x,,xl) satisfying f o r  all &H '(xo,xi) 

<ut,+ + <mu,& - <gu,Db - d(xo)R(t,u) = 0, u(0 , - )  = (0 ( 5 )  

where R(t,&) 4 Ixl b(t,QJI([)d[, D = 
xO 

we assume tha t  t he  parameters g and  m depend only o n  size x. 

and  <,> is the  usual L2==Ho inner product. For brevity, ax ' 
T h e  ideas we present here can 

be readily modified to treat  theoretically a n d  computationally the  more general case where g 

a n d  m also a r e  t ime dependent. 

We assume tha t  (g,m,b) a r e  to be chosen f rom function spaces GxMxBCH'(X,,X I )~Ho(xo ,  

xi)xHo([O,T]x[xo,x,]) containing only nonnegative func t ions  g,m,b where the functions in G also 

satisfy g(xi)=O a n d  g(xo)bvl f o r  some positive constant vl. For the approximating systems (see 

[4], [ lo])  we  assume tha t  subspaces ZNc"(xo,x,) are chosen and  let uN(t)cZN denote solutions to 

+ <muN,+ - <guN,D+ - II(xo)R(t,uN)=O, f o r  all  &ZN, uN(0)=PN@, ( 6 )  

where PN is the  orthogonal projection of Ho(xo,xi) on to  Z". We assume that the subspaces Z" 

sat  is f y: 

( H I )  For @€Hi  we have  P N P &  i n  H i  while for &Ho we have P"6-4 in Ho  

A number  of t he  commonly used approximating families (piecewise linear, cubic splines [27]) 

satisfy th i s  hypothesis. The  ideas here can  be slightly modified (see the remarks in [l])  to 

also include spectral  families (such as Legendre polynomials - see [ZO]) in the state 

approximation schemes f o r  which the  convergence theory presented here is valid. 

We f u r t h e r  assume tha t  G, M, B a r e  compact i n  H i ,  Ho, Ho respectively, and  that compact 

approximation families GM, MM, BM fo r  G, M, B respectively have been chosen satisfying: 

(H,) For g'cGM, gM(xi)=O, gM(xo)>v,, IDgMlaQi, a n d  GM=iy(G) where fo r  each gcG, iy(g)-g 

in H i  with  the  convergence uniform in  gcG; 
For mMcMM, ImM10D6w,, and  MM=iy(M) where f o r  each mcM, iy(m)-+m in Ho with the 

convergence uni form in mcM; 

For bMcBM, [bM(t,.)16g3, a n d  BM=iy(B) where fo r  each bcB, if;'(b)-b in Ho with the 

convergence uni form in  bcB. 

(H,) 

(H,) 

We next  remark  tha t  to give a convergence theory i t  suf f ices  (see [8]) to argue that 

uN(t;qM)+u(t;q) in Ho f o r  each t as N,M-" whenever (qM) is a n  a rb i t ra ry  sequence w i t h  

q'cGMxMMxBM a n d  qM-qcGxMxB. Indeed, it suf f ices  to give these arguments in the form 

uN(t;qN)-'u(t;q) whenever (qN} is a rb i t ra ry  in  GxMxB wi th  qN+q in GxMxB (in the HixHoxHo 

topology in  this case). We sketch the  arguments; let (qN} be a rb i t r a ry  with qN+q in GxMxB 

a n d  let u (q ), u(q) be the solutions to (6) ,  ( 5 ) ,  respectively, corresponding to qN=(gN,mN,bN), N N  
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q=(g,m,b) respectively. 

Ho(xo,x,) f o r  each  t i n  (0,T). 

From (H,), i t  suf f ices  to a rgue  tha t  zN(t) s uN(t;qN) - PNu( t ;q )4  in  

Letting RN(t,JI) Ixl bN(t,{)Jl({)d{, we  have f rom (5) a n d  (6) tha t  f o r  all &ZN 
xO 

<(uN-PNu)t,& = <u;- ut + (u-PNu)t,& 

= <(I-PN)ut,#> + <mu-mNuN,#> + <gNuN - gu,D#>+ @(xo)ARN 

whcre ARNzRN(t,uN)-R(t,u). With zN as def ined  above we have zN(0)=O and  

< z F b  = <(I-PN)u~,#> + <mu-mNPNu,#> - <mNzN,#> 

+ <gNPNu-gu,Du> + <gNzN,D#> + @(x0)ARN. 

Choosing #=zN i n  this identity we f ind  

= <(I-PN)ut,zN> + <mu-mNPNu,zN> + <gNPNu-gu,DzN> + zN(x0)ARN. 

Recalling tha t  gN(x,) = g(x,) = 0, wi th  integration by parts we f ind  

<gNzN,DzN> = - <DgNzN,zN> - gN(xo) zN(xo)2 
2 2 

a n d  

<gNPNU-gU,DzN> = - <D(gNPNU-gU),zN> - [ g N P N ~ - g ~ ] ( ~ o ) ~ N ( ~ o ) .  

Hence, we have  

lzN12 t <m?zN,zN> + <DgNzN,zN> + gN(xo)zN(xo)2 
2 d t  2 2 

= <(I-PN)ut,zN> + <mu-mNPNu,zN> - <D(gNPNu-gu),zN> (7) 

+ ZN(Xo) [(gu-gNPNu)(x,) + A R N ] .  

Using the  bounds from (H2), (H,) we f i n d  

<mNzN,zN> + 
fo r  positive constants p, u. 
less than  or equal  to 

<DgNzN,zN> + LgN(xo)zN(xo)2 3 plzN12 + mN(x0)'  
2 2 

Standard inequalities imply tha t  the  right side of the equality ( 7 )  is 

where E > O  is arbitrari ly chosen. From t h e  bounds of (H,) we have tha t  IRN(t,zN)IdklzNl and  
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def in ing  sN(t) p RN(t,PNu-u) + RN(t,u) - R(t,u) we may conclude tha t  

[ARNI S klzNI + ISN(t)l. 

Using these inequalities i n  (7) we obtain 

2 d t  lzN1' + [ k 3 r -  g]lzNIz + (u-r)lzN(xo)lZ < hN(t) 

whcre 

hN(t) I [l(I-PN)utl + Imu-mNPNu I + ID(gNPNu - gu) I 

+ 2 I(gu-gNPNu)(xo) I + 4 I sN(t) I 2). 
4e 

Choosing E=U a n d  using zN(0)=O, we may apply Gronwall's lemma to conclude that  i t  suff ices  to 

argue tha t  hN(t)-9 in  L'(0,T) to  obtain the desired results. Under suff ic ient  smoothness for  u(t), 

this follows readily f rom (Hi )  - (H,). 

While we a r e  still  testing our  methods for  use wi th  models such as (4), our initial f indings 

a re  qui te  positive. We present one of our  simple test examples. 

_ -  
Example 3: We seek to  estimate g in  (4) with m=2, b ( x ) = 1 2 x d x ,  @(x)=dzdi-x, xo=O, x , = l .  

The  solution corresponding to  g*(x)=2(1-x) is given by u( t ,x )=e tdFdG.  Cubic splines (ZN of 

dimension N+3) were used fo r  the s ta te  approximations while linear splines (QM of dimension 

M) were used i n  parameter approximations gM(x) = z: 5 t i  (x), where the sum is f rom i=O to 

i=M-1 a n d  P i  is the usual "hat" funct ion basis element [27] with support in  ((i-l)/M, (i+l)/M). For 

M=4, the  t rue  value g* corresponds to coefficients g*.c($,<,az,<) = (2~0,1.5,1.0,.5). Using da ta  

a t  eleven points i n  time and  space each a n d  initial guess ( l , l , l , l ) ,  we obtained the converged 

values (1.998,1.498,1.000,.496) fo r  a-coefficients in the  representation f o r  3214 , i.e., with N=32, 

M=4. T h e  graphs of g* and  32*4 a re  not distinguishable using ord inary  plotting devices a n d  

hence we do  not present them. 

COMPUTATIONAL CONSIDERATIONS 

T h e  problems on which we have focused i n  this presentation a re  computationally 

intensive. Even simple examples such as those presented above can require f rom 10' to IO4 
seconds on a n  IBM 3081 and  we a re  now using the ideas discussed here in  research problems fo r  

which use of such a sequential machine would require  ra ther  prohibitive computational 

expenditures. The  necessary sof tware packages must deal with reasonably large vector/tensor 

systems a n d  involve many repetitive routine calculations. Therefore, a substantial par t  of our  

research e f for t s  over  the last year have entailed development of ideas, algorithms, and  sof tware 

to  take  advantage of emerging computer archi tectures  involving parallel and  vector 

computat ional  capabilities. Use of such architectures (in our  research programs a t  Brown 

University a n d  ICASE, we a r e  current ly  employing a CRAY X-MP - a widely known vector 

machine - a n d  a STAR ST-100 a r r ay  processor with parallel features) has substantially enhanced 
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our  e f fo r t s  to investigate some of t he  research questions in  modeling outlined above. For 

example, results f o r  problems of the  type  given i n  Example 1 typically require f rom IO3 to IO‘ 
seconds on  the  IBM 3081, bu t  when the  algorithms a n d  corresponding sof tware  a r e  modified to 

take  advantage  of the a r i thmet ic  speed a n d  vector capabilities of the  CRAY, we can  car ry  out  

the  same computational runs  in 50 to 200 seconds on a CRAY X-MP. 

Research machines such as the  C R A Y  are, through NSF a n d  other research sponsoring 

agencies, becoming readily accessible to many scientists i n  the U.S. We recognize that the  

machines we arc presently using fo r  these techniques a n d  methods a r e  not widely available to 

the world-widc biological research community. However, we firmly believe tha t  the cur ren t  

revolution in  computer hardware  development has important implications fo r  t he  community. We 

note tha t  many of the  high speed, parallel a n d  vector features of large, expensive research a r r ay  

processors such as the FPS-164 and  STAR ST-100 a n d  research vector machines such as the  

CRAY X-MP (and I-S) a n d  CYBER 205 a r e  rapidly becoming available in  small, relatively 

inexpensive desk-top configurations. A number  of attached ar ray  processor units and  boards 

a re  now available fo r  use with personal computers such as the IBM PC XT. Recently, new 

high speed chips (e& INTEL 80386 - a 32 bit, 4 MFLOPS chip) have been announced a n d  will 

be available in PC’s i n  1987. We believe tha t  t he  wide availabil i ty of “desk-top CRAY” 

capabili ty discussed in the  computer science community is only several years away. If we can  

successfully develop ideas fu r the r  along t h e  lines of those discussed above, the  potential fo r  a 

significant impact on biological modeling a n d  research is enormous. 
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